Patterns in Natural
Systems: Landforms
Plate
Tectonics
Plate
Tectonics refers to the study of the structure of the earth’s crust, and its’
movements.
- 250 million years ago there existed 1 supercontinent called Pangaea
- 130 million years ago Pangaea began to separate
http://www.enchantedlearning.com/subjects/astronomy/planets/earth/Continents.shtml
All About Plate Tectonics:
Earth's Plates and Continental Drift
Earth's Plates and Continental Drift
The Earth's rocky outer crust solidified billions of years ago, soon after the Earth formed. This crust is not a solid shell; it is broken up into huge, thick plates that drift atop the soft, underlying mantle.
The
plates are made of rock and drift all over the globe; they move both
horizontally (sideways) and vertically (up and down). Over long periods of
time, the plates also change in size as their margins are added to, crushed
together, or pushed back into the Earth's
mantle. These
plates are from 50 to 250 miles (80 to 400 km) thick.
Forward Backward
|
The map of the Earth is always changing; not only are the underlying plates moving, but the plates change in size. Also, the sea level changes over time (as the temperature on Earth varies and the poles melt or freeze to varied extents), covering or exposing different amounts of crust.
Earth's Major Plates:
The current continental and oceanic plates include: the Eurasian plate, Australian-Indian plate, Philippine plate, Pacific plate, Juan de Fuca plate, Nazca plate, Cocos plate, North American plate, Caribbean plate, South American plate, African plate, Arabian plate, the Antarctic plate, and the Scotia plate. These plates consist of smaller sub-plates.
PLATE TECTONICS
Type of Crust
|
Average Thickness
|
Average Age
|
Major Component
|
Continental Crust
|
20-80 kilometers
|
3 billion years
|
Granite
|
Oceanic Crust
|
10 kilometers
|
Generally 70 to 100 million years old
|
Basalt
|
The
theory of plate tectonics (meaning "plate structure") was developed
in the 1960's. This theory explains the movement of the Earth's plates (which
has since been documented scientifically) and also explains the cause of
earthquakes, volcanoes, oceanic trenches, mountain range formation, and many
other geologic phenomenon.
The
plates are moving at a speed that has been estimated at 1 to 10 cm per year.
Most of the Earth's seismic activity (volcanoes and earthquakes) occurs at the
plate boundaries as they interact.
The top layer of the Earth's
surface is called the crust (it lies on top of the plates). Oceanic crust
(the thin crust under the oceans) is thinner and denser than continental
crust. Crust is constantly being created and destroyed; oceanic crust is
more active than continental crust.
Under the
crust is the rocky mantle, which is composed of silicon, oxygen, magnesium,
iron, aluminum, and calcium. The upper mantle is rigid and is part of the lithosphere
(together with the crust). The lower mantle flows slowly, at a rate of a few
centimeters per year. The asthenosphere is a part of the upper mantle
that exhibits plastic properties. It is located below the lithosphere (the
crust and upper mantle), between about 100 and 250 kilometers deep.
TYPES OF PLATE MOVEMENT: Divergence, Convergence, and Lateral Slipping
At the boundaries of the plates, various deformations occur as the plates interact; they separate from one another (seafloor spreading), collide (forming mountain ranges), slip past one another (subduction zones, in which plates undergo destruction and remelting), and slip laterally.
TYPES OF PLATE MOVEMENT: Divergence, Convergence, and Lateral Slipping
At the boundaries of the plates, various deformations occur as the plates interact; they separate from one another (seafloor spreading), collide (forming mountain ranges), slip past one another (subduction zones, in which plates undergo destruction and remelting), and slip laterally.
ALFRED
WEGENER AND PANGAEA
In 1915, the German geologist and meteorologist Alfred Wegener (1880-1930) first proposed the
theory of continental drift, which states that parts of the Earth's crust
slowly drift atop a liquid core. The fossil record supports and gives credence
to the theories of continental drift and plate tectonics.
Wegener hypothesized that there was an original, gigantic supercontinent 200 million years ago, which he named Pangaea, meaning "All-earth". Pangaea was a supercontinent consisting of all of Earth's land masses. It existed from the Permian through Jurassic periods. It began breaking up during the Jurassic period, forming continents Gondwanaland and Laurasia, separated by the Tethys Sea. Pangaea started to break up into two smaller supercontinents, called Laurasia and Gondwanaland, during the Jurassic period. By the end of the Cretaceous period, the continents were separating into land masses that look like our modern-day continents. Wegener published this theory in his 1915 book, On the Origin of Continents and Oceans. In it he also proposed the existence of the supercontinent Pangaea, and named it (Pangaea means "all the land" in Greek). |
Fossil Evidence in Support of the Theory
Eduard Suess was an Austrian geologist who first realized that there had once been a land bridge between South America, Africa, India, Australia, and Antarctica. He named this large land mass Gondwanaland (named after a district in India where the fossil plant Glossopteris was found). This was the southern supercontinent formed after Pangaea broke up during the Jurassic period. He based his deductions on the plant Glossopteris, which is found throughout India, South America, southern Africa, Australia, and Antarctica. Fossils of Mesosaurus (one of the first marine reptiles, even older than the dinosaurs) were found in both South America and South Africa. These finds, plus the study of sedimentation and the fossil plant Glossopteris in these southern continents led Alexander duToit, a South African scientist, to bolster the idea of the past existence of a supercontinent in the southern hemisphere, Eduard Suess's Gondwanaland. This lent further support to A. Wegener's Continental Drift Theory |
Glossopteris, a tree-like plant from the Permian through the Triassic Period. It had tongue-shaped leaves and was about 12 ft (3.7 m) tall. It was the dominant plant of Gondwana. |
ACTIVITIES ABOUT EARTH'S CONTINENTAL PLATES AND CRUST
An interactive quiz about plate tectonics
A quiz about Continental drift and plate tectonics
Label the outer layers of the Earth
Label Seafloor Spreading (Plate Divergence) Label the growth of new oceanic crust as two plates diverge.
Label
Subduction (Plate Convergence) Label the desctruction of crust as two plates
converge.
No comments:
New comments are not allowed.